Submit Manuscript  

Article Details


Role of General Adversarial Networks in Mammogram Analysis: A Review

[ Vol. 16 , Issue. 7 ]

Author(s):

Annapoorani Gopal*, Lathaselvi Gandhimaruthian and Javid Ali   Pages 863 - 877 ( 15 )

Abstract:


The Deep Neural Networks have gained prominence in the biomedical domain, becoming the most commonly used networks after machine learning technology. Mammograms can be used to detect breast cancers with high precision with the help of Convolutional Neural Network (CNN) which is deep learning technology. An exhaustive labeled data is required to train the CNN from scratch. This can be overcome by deploying Generative Adversarial Network (GAN) which comparatively needs lesser training data during a mammogram screening. In the proposed study, the application of GANs in estimating breast density, high-resolution mammogram synthesis for clustered microcalcification analysis, effective segmentation of breast tumor, analysis of the shape of breast tumor, extraction of features and augmentation of the image during mammogram classification have been extensively reviewed.

Keywords:

General adversarial networks, breast density estimation, microcalcification, breast tumour segmentation, feature extraction, mammogram augmentation.

Affiliation:

Department of Information Technology, University College of Engineering, Anna University, Tiruchirappalli, Department of Information Technology, St. Joseph’s College of Engineering, Chennai, Department of Information Technology, St. Joseph's Institute of Technology, Chennai

Graphical Abstract:



Read Full-Text article